ECO663 Data Analysis of Experiment/Survey

Week 11

ANOVA (Analysis of Variance)

- One-Way ANOVA
- Two-Way ANOVA
- Three-Way ANOVA
- Tukey's Test
- Refer to the handout.

Difference in Differences


```
# Getting sample data.
    library(foreign)
    mydata = read.dta("http://dss.princeton.edu/training/Panel101.dta")
# Create a dummy variable to indicate the time when the treatment started. Lets
assume that treatment started in 1994. In this case, years before 1994 will have a
value of 0 and 1994+ a 1. If you already have this skip this step.
    mydata$time = ifelse(mydata$year >= 1994, 1, 0)
# Create a dummy variable to identify the group exposed to the treatment. In this
example lets assumed that countries with code 5,6, and 7 were treated (=1).
Countries 1-4 were not treated (=0). If you already have this skip this step.
    mydata$treated = ifelse(mydata$country == "E"
                            mydata$country == "F" |
                            mydata$country == "G", 1, 0)
# Create an interaction between time and treated. We will call this interaction
'did'.
    mydata$did = mydata$time * mydata$treated
                                                 https://www.princeton.edu/~otorres/DID101R.pdf
```

```
# Estimating the DID estimator
didreg = lm(y ~ treated + time + did, data = mydata)
summary(didreg)
                   Call:
                   lm(formula = y \sim treated + time + did, data = mydata)
                   Residuals:
                         Min
                                   10
                                           Median
                                                                  Max
                                                        30
                   -9.768e+09 -1.623e+09 1.167e+08 1.393e+09 6.807e+09
                   Coefficients:
                               Estimate Std. Error t value Pr(>|t|)
                   (Intercept) 3.581e+08 7.382e+08 0.485 0.6292
                              1.776e+09 1.128e+09
                                                   1.575
                   treated
                                                           0.1200
                              2.289e+09 9.530e+08 2.402
-2.520e+09 1.456e+09 -1.731
                   time
                                                           0.0191
                                                           0.0882 .
                  did
                   Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 `' 1
                   Residual standard error: 2.953e+09 on 66 degrees of freedom
                   Multiple R-squared: 0.08273, Adjusted R-squared: 0.04104
                   F-statistic: 1.984 on 3 and 66 DF, p-value: 0.1249
# The coefficient for 'did' is the differences-in-differences
estimator. The effect is significant at 10% with the treatment having
a negative effect.
```

```
-
                                                                                .
# Estimating the DID estimator (using the multiplication method, no
need to generate the interaction)
didreg1 = lm(y ~ treated*time, data = mydata)
summary(didreg1)
                             Call:
                             lm(formula = y ~ treated * time, data = mydata)
                             Residuals:
                             Min 1Q Median 3Q Max
-9.768e+09 -1.623e+09 1.167e+08 1.393e+09 6.807e+09
                                                                               3Q
                             Coefficients:
                                               Estimate Std. Error t value Pr(>|t|)

        (Intercept)
        3.581e+08
        7.382e+08
        0.485
        0.6292

        treated
        1.776e+09
        1.128e+09
        1.575
        0.1200

        time
        2.289e+09
        9.530e+08
        2.402
        0.0191
        *

                            treated:time -2.520e+09 1.456e+09 -1.731 0.0882 .
                             Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
                             Residual standard error: 2.953e+09 on 66 degrees of freedom
                             Multiple R-squared: 0.08273, Adjusted R-squared: 0.04104
                             F-statistic: 1.984 on 3 and 66 DF, p-value: 0.1249
```


If outcome or dependent variable is binary and in Some examples are:	n the form 0/1, then use logit or probit models.
Did you vote in the last election? 0 'No' 1 'Yes'	Do you prefer to use public transportation or to drive a car? 0 'Prefer to drive' 1 'Prefer public transport'
If outcome or dependent variable is categorical b logit or ordered probit models. Some examples a	ut are ordered (i.e. low to high), then use ordered re:
Do you agree or disagree with the President?	What is your socioeconomic status?
1 'Disagree' 2 'Neutral' 3 'Agree'	1 'Low' 2 'Middle' 3 'High'
If outcome or dependent variable is categorical v logit. Some examples are:	vithout any particular order, then use multinomial
If elections were held today, for which party would you vote? 1 'Democrats'	What do you like to do on the weekends? 1 'Rest' 2 'Go to movies'
3 'Republicans'	DTR 2

# Catting cample data			
library(foreign)			
mydata <- read.dta("htt	ns://dss.princet	on.edu/training/Pane	1101.dta")
myaaca x Icaa.aca(nee	pp.,, ass.princee	on.eau/ cruining/rune	101.404 /
# Bunning a logit model			
logit < - glm(y bin ~ y)	+ v2 + v3 fami	lv=binomial(link="lo	rit") data=mydata)
A gim(y_bim xi		IY DINOMIAL(IIIK IO	
		T	
Store results Outcome	Predictors	Type of model	Data source
summary (logit)			
Summary (10g1c)			

Odds ratio # Using package --mfx-library(mfx) logitor(y_bin ~ x1 + x2 + x3, data=mydata) Call: logitor(formula = y_bin ~ x1 + x2 + x3, data = mydata) Odds Ratio: OddsRatio Std. Err. z P>|z| 2.36735 1.85600 1.0992 0.27168 x1 1.44273 0.44459 1.1894 0.23427 x2 x3 2.11957 0.96405 1.6516 0.09861 . ---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1


```
The logit model can be written as (Gelman and Hill, 2007):
                               Pr(y_i = 1) = Logit^{-1}(X_i\beta)
In the example:
logit <- glm(y_bin ~ x1 + x2 + x3, family=binomial(link="logit"), data=mydata)</pre>
coef(logit)
          (Intercept) x1 x2 x3
0.4261935 0.8617722 0.3665348 0.7512115
                                                    x3
    Pr(y_i = 1) = Logit^{-1}(0.4261935 + 0.8617722*x1 + 0.3665348*x2 + 0.7512115*x3)
Estimating the probability at the mean point of each predictor can be done by inverting the logit model.
Gelman and Hill provide a function for this (p. 81), also available in the R package -arm-
                 invlogit = function (x) \{1/(1+\exp(-x))\}
                  invlogit(coef(logit)[1]+
                             coef(logit)[2]*mean(mydata$x1)+
                             coef(logit)[3]*mean(mydata$x2)+
                              coef(logit)[4]*mean(mydata$x3))
                   Pr(y_i = 1) = 0.8328555
```


Store results Outcome Predictors summary (multil)	Data source
Store results Outcome Predictors	Data source
summary (multi1)	
summary (multi1)	
Call:	
<pre>multinom(formula = ses2 ~ science + socst + fema)</pre>	le, data = mydata)
Coefficients:	These are the legit of officients relative
(Intercept) science socst femalefe	emale These are the logit coefficients relative
low 1.912288 -0.02356494 -0.03892428 0.8165	59717 - to the reference category. For example,
high 4 057004 0 00000170 0 04200202 0 0200	87211 under 'science', the -0.02 suggests that
nign -4.037284 0.02292179 0.04300323 -0.0328	
nign -4.057284 0.02292179 0.04500525 -0.0528	for one unit increase in 'science' score,
Std. Errors:	for one unit increase in 'science' score, the logit coefficient for 'low' relative to
Std. Errors: (Intercept) science socst femalefema	for one unit increase in 'science' score, the logit coefficient for 'low' relative to 'middle' will go down by that amount
Std. Errors: (Intercept) science socst femalefemal low 1.127255 0.02097468 0.01951649 0.39099	for one unit increase in 'science' score, the logit coefficient for 'low' relative to 'middle' will go down by that amount,
Std. Errors: (Intercept) science socst femalefemal low 1.127255 0.02097468 0.01951649 0.39099 high 1.222937 0.02087182 0.01988933 0.35001	for one unit increase in 'science' score, the logit coefficient for 'low' relative to 'middle' will go down by that amount, -0.02.
Std. Errors: (Intercept) science socst femalefema low 1.127255 0.02097468 0.01951649 0.39096 high 1.222937 0.02087182 0.01988933 0.35005	for one unit increase in 'science' score, the logit coefficient for 'low' relative to 'middle' will go down by that amount, -0.02. In other words, if your science score
Std. Errors: (Intercept) science socst femalefema low 1.127255 0.02097468 0.01951649 0.39096 high 1.222937 0.02087182 0.01988933 0.35001 Residual Deviance: 388.0697	for one unit increase in 'science' score, the logit coefficient for 'low' relative to 'middle' will go down by that amount, -0.02. In other words, if your science score increases one unit, your chances of
Std. Errors: (Intercept) science socst femalefema low 1.127255 0.02097468 0.01951649 0.39096 high 1.222937 0.02087182 0.01988933 0.35001 Residual Deviance: 388.0697 pic. 404.0697	for one unit increase in 'science' score, the logit coefficient for 'low' relative to 'middle' will go down by that amount, -0.02. In other words, if your science score increases one unit, your chances of staying in the middle ses category are