ECO239 Statistics I

Week 6 Remaining from last week Probability

Chebyshev's Theorem

• Answers the question "How much percentage of observations can be found in the interval

Chebyshev's Theorem

- For any mean and standard deviation, and k >1, the % of observation that fall within the interval $~\mu\pm k\sigma~$ is at least

$$100\left[1-\left(\frac{1}{k^2}\right)\right]\%$$

- Regardless of how the data are distributed.
- Does not work for k = 1.

Q: for k=2, what is the % of observations? How about for k = 3?

Chebyshev's Theorem

- Advantage: Applicable to any population & distributional shapes.
- **Disadvantage**: In reality, distributions are relatively close to symmetric, and % of observations in a specific range is much higher.

If stdev = 8, instead of 6,

- At least how much % of students are included in the same range (50 & 98) ?
- Do you think it's more /less than the previous question? And WHY?

6

5. Intersection of Event

If A and B are two events in a sample space S, then the intersection, $A \cap B$, is the set of all outcomes in S that belong to both A and B.

e.g. event A: $\{1, 3, 5\}$, event B: $\{1, 2, 3\}$ => A \cap B= $\{1, 3\}$

7. Union of EventsUnion A U B is the set of all outcomes in S that belong to either A or B.

A={1, 3, 5} B={3, 4, 5} AUB={1, 3, 4, 5}

8. Events E1, E2,... Ek are Collectively Exhaustive events if E1 U E2 U...U Ek = S.
(Union of all events = sample space itself)
e.g. Rolling a die case.
E1 = {1, 2}, E2 = {3, 4}, E3 = {5, 6}.
E1 U E2 U E3 = S.
e.g. Rolling a die case.
E1 = {1, 3, 5}, E2 = {2, 4, 6}, E3 = {3, 4, 5}
E1 U E2 U E3 = S.

Practice	
 Rolling a die A= {2, 3, 6}, B = {4, 5, 6} 	
$A \cap B =$ AUB=	$\overline{A} \cap \overline{B}$ $A \cap \overline{B}$
A ∪ B Ā ∪ B	Are A and B Mutually Exclusive? Are A and B Collectively Exhaustive?

Law of large numbers

Law of large numbers states that as more observations are collected, the proportion of occurrences with a particular outcome, $\hat{p}n$, converges to the probability of that outcome, p.

Le	et's Try					
	H or T		H or T		H or T	
1		11		21		
2		12		22		
3		13		23		
4		14		24		
5		15		25		
6		16		26		
7		17		27		
8		18		28		
9		19		29		
10		20		30		

When tossing a fair coin, if heads comes up on each of the first 10 tosses, what do you think the chance is that another head will come up on the next toss? (a) 0.5

- (b) less than 0.5
- (c) more than 0.5

	Prae	ctice			
Wh	at is the proba	bility tł	nat a randomly sar	npled	
st	udent thinks m	narijuar	na should be legali	zed <u>or</u>	they
ag	ree with their	parent Share	s' political views? Parents' Politics		
	Legalize MJ	No	Yes	Total	
	No	11	40	51	_
	Yes	36	78	114	
	Total	47	118	165	_
(a) (40 + 36 - 78) / 16	5			
(b) (114 + 118 - 78) /	165			
(c) 7	8 / 165				
(d) 7	78 / 188				
(e) 1	.1 / 47				

Recap

General addition rule P(A or B) = P(A) + P(B) - P(A and B)

Note: For mutually exclusive (disjoint) events P(A and B) = 0, so the above formula simplifies to P(A or B) = P(A) + P(B)

Q: What is the probability that a customer uses at least one?

Q: What is the probability that a customer uses none of them?

Combination Formula

• # of combination to pick K out of n

$$C_k^n = \frac{n!}{k! (n-k)!}$$

Proba	bility dis	tribu	tions	5		
A <i>probability</i> which they • The prot	<i>distribution</i> lists al occur. ability distributior	l possible e n for the ge	events and nder of or	the proba	abilities with	1
	Eve Probabil	ent Male ity 0.5	Female 0.5	9		
 Rules for 1. The ev 2. Each p 3. The pr 	probability distrik ents listed must b robability must be obabilities must to	outions: e disjoint e between (otal 1) and 1			
• The pi	robability dis	stributio	on for t	he gen	ders of t	:wo
Kius.	Event	MM	FF	MF	FM	
	Probability	0.25	0.25	0.25	0.25	

Conditional Probability

Relapse

Researchers randomly assigned 72 chronic users of cocaine into three groups: desipramine (antidepressant), lithium (standard treatment for cocaine) and placebo. Results of the study are summarized below.

		no	
	relapse	relapse	total
desipramine	10	14	24
lithium	18	6	24
placebo	20	4	24
total	48	24	72

http://www.oswego.edu/~srp/stats/2_way_tbl_1.htm

What is the probability	that a patient rela	psed?	
	ĺ	no	
	relapse	relapse	total
desipramine	10	14	24
lithium	18	6	24
placebo	20	4	24
total	48	24	72

		no	
r	relapse	relapse	total
desipramine	10	14	24
lithium	18	6	24
placebo	20	4	24
total	(48)	24	(72)

Joint probability

What is the probability that a patient received the antidepressant (desipramine) <u>and</u> relapsed?

		no	
	relapse	relapse	total
desipramine	10	14	24
lithium	18	6	24
placebo	20	4	24
total	48	24	72

	- /		
What is the probability that antidepressant (desiprami	a patio ne) <u>an</u> o	ent receiv <u>d</u> relapsec	ed the I?
		no	
rel	apse	relapse	total
desipramine	10	14	24
lithium	18	6	24
placebo	20	4	24
total	48	24	72

	A	A_complement Ā		
В	$A \cap B$	$\overline{A} \cap B$	P(B)	
$\frac{B_completment}{\overline{B}}$	$A\cap \overline{B}$	$\overline{A}\cap\overline{B}$	$P(\overline{B})$	
	P(A)	$P(\overline{A})$	1	

