ECO239

Week 11

Poisson Approximation to Binomial Distribution $(np \le 7)$

$$P(X) = \frac{e^{-np}(np)^{x}}{x!}$$

Practice

• 3.5% of small corporate would file for bankruptcy in the coming year. For a random sample of 100 small corporations, what is the probability that at least 3 will file for bankruptcy in the next year?

If you try to solve this problem using Binomial Distribution...

•
$$P(X \ge 3 | n=100, p=0.035)=1 - P(X \le 2 | n=100, p=0.035)$$

• $=1 - [P(X=0) + P(X=1) + P(X=2)]$
• $=1 - \left[\frac{100!}{0! \ 100!} (0.035^0)(0.965^{100}) + \frac{100!}{1! \ 99!} (0.035^1)(0.965^{99}) + \frac{100!}{2! \ 98!} (0.035^2)(0.965^{98})\right]$
• $=0.6841$

Practice• 3.5% of small corporate would file for bankruptcy in
the coming year. For a random sample of 100 small
corporations, what is the probability that at least 3
will file for bankruptcy in the next year? $P(X) = \frac{e^{-\lambda}\lambda^x}{x!}$ • Solve with Poisson Approximation to Binomial
Distribution. $P(X) = \frac{e^{-\lambda}\lambda^x}{x!}$ • n= 100, p = 0.035, np = 3.5
• P(X \ge 3| np=3.5)=1-P(X \le 2|np=3.5)
• =1-[P(X=0)+P(X=1)+P(X=2)]
• =1- e^(-3.5)*[1+3.5+(3.5^2)/2]=0.684093

Joint Probability Function

- A joint probability function is used to express the probability that X takes the specific value x and simultaneously Y takes the value y, as a function of x and y.
- $P(x,y)=P(X=x \cap Y=y)$

Conditional Probability Function

• The conditional probability function of the random variable Y expresses the probability that Y takes the value y when the value x is specified for X.

$$P(y|x) = \frac{P(x,y)}{P(x)} \qquad P(x|y) = \frac{P(x,y)}{P(y)}$$

		Y (total num	ber of heads	in 3 tosses)		P(X)
		0	1	2	3	
X (# of	0	{ttt} =1/8	{tht, tth} =2/8	{thh} =1/8	0	P(X=0)= 4/8
heads on 1 st toss)	1	0	{htt} =1/8	{hht, hth} =2/8	{hhh} =1/8	P(X=1)= 4/8
Ρ(Υ)		P(Y=0) =1/8	P(Y=1) =3/8	P(Y=2) =3/8	P(Y=3)= 1/8	
• Fir P(x	nd P(X x y)	=1 Y=2) an = $\frac{P(x, y)}{P(y)}$	d P(Y=2 X=) - P(y	$P(x) = \frac{P(x)}{P(x)}$	<u>,y)</u> x)	

Independence The jointly distributed random variables X and Y are said to be independent iff their joint probability function is the product of their marginal probability functions. P(x,y) = P(x)P(y) for all possible pairs of values x and y. ⇒P(y|x) = [P(x)P(y)]/P(x) = P(y) ⇒P(x|y)=[P(x)P(y)]/P(y) = P(x)

Mean and Variance

- E(X)=X1*P(X1)+X2*P(X2)...+Xn*P(Xn)
- Var(X)=(X1-E(X))^2*P(X1)+(X2-E(X))^2*P(X2)+...(Xn-E(X))^2*P(Xn)
- Or Var(X)= X1^2*P(X1)+X2^2*P(X2)+...Xn^2*P(Xn)-E(X)^2

Covariance

• Let X and Y be discrete random variables with means μx and μy.

$$Cov(X, Y)$$

= $E[(x - \mu_x)(y - \mu_y)]$
= $\sum_x \sum_y (x - \mu_x)(y - \mu_y)P(x, y)$
$$Cov(x, y) = E[XY] - \mu_x \mu_y$$

= $\sum_x \sum_y xyP(x, y) - \mu_x \mu_y$

Linear Function of Several Random Variables

- W = aX+bY
- E(W)= aµx+bµy

$$Var(W) = a^{2}\sigma_{X}^{2} + b^{2}\sigma_{Y}^{2} + 2abCov(X,Y)$$
$$Var(W) = a^{2}\sigma_{X}^{2} + b^{2}\sigma_{Y}^{2} + 2abCorr(X,Y)\sigma_{X}\sigma_{Y}$$

- W=aX-bY
- E(W)= aµx-bµy

$$Var(W) = a^{2}\sigma_{X}^{2} + b^{2}\sigma_{Y}^{2} - 2abCov(X,Y)$$
$$Var(W) = a^{2}\sigma_{X}^{2} + b^{2}\sigma_{Y}^{2} - 2abCorr(X,Y)\sigma_{X}\sigma_{Y}$$

Practice Setting: New model of a cell phone Advertised on a TV program. 15% of people who watch the show regularly and could identify the product. 16% of people watch the show regularly 45% of people could identify the product. X=1: regularly watch the show, X=0 otherwise Y=1: correctly identify the product, Y=0 otherwise

	0	1	P(X)
0	0.54	0.30	0.84
1	0.01	0.15	0.16
P(Y)	0.55	0.45	1
• e.g. P(0,0)=P	Y(X=0 ∩ Y=0)=	0.54	

Practi a. Find b. Find c. Are X d. Find e. If W	 Practice a. Find the joint probability function of X and Y. b. Find conditional probability function of Y given X=1. c. Are X and Y independent? d. Find Cov(X,Y) and Cor(X,Y) e. If W = 2X + Y, Find E(W) and Var(W) f. If W = 2X - Y, Find E(W) and Var(W) 							
	0	1	P(X)					
0	0.54	0.30	0.84					
1	0.01	0.15	0.16					
P(Y)	0.55	0.45	1					

b. Find conditional probability function of Y given X=1.

 $P(Y=0|X=1)=P(X=1\cap Y=0)/P(X=1) = 0.01/0.16=0.0625$

 $P(Y=1|X=1)=P(X=1\cap Y=1)/P(X=1)=0.15/0.16=0.9375$

• E(W)=2*E(X)+E(Y) =2*0.16+1*0.45=0.77

• Var(W)=(2^2)*Var(X)+(1^2)*Var(Y)+2*2*1*Cov(X,Y) =4*0.1344+1*0.2475+4*0.078=1.0971

$$Var(W) = a^2 \sigma_X^2 + b^2 \sigma_Y^2 + 2abCov(X,Y)$$

f. If W = 2X - Y, Find E(W) and Var(W)

• Var(W)=4*0.1344+1*0.2475-4*0.078=0.4731

$$Var(W) = a^2 \sigma_X^2 + b^2 \sigma_Y^2 - 2abCov(X, Y)$$

Continuous Probability Distribution

Continuous Distributions covered.

- Uniform
- Normal
- Exponential

Continuous Random Variable

• A variable that can assume any value in an interval

e.g. Time required to complete a task Temperature of a solution Thickness, height, weight

Mean, Variance, Standard Deviation of Continuous R.V. $\mu_x = E(X) = \int_x xf(x)dx$ $\sigma_x^2 = E[(X - \mu_x)^2]$ $= \int_x (X - \mu_x)^2 f(x)dx$ $\sigma_x^2 = E(X^2) - \mu_x^2$ $= \int_x X^2 f(x)dx - \mu_x^2$

Linear Function of Variables
• Let W = a + bX, then

$$\mu_W = E(a + bX) = a + bE(X)$$

$$= a + b\mu_X$$

$$\sigma_W^2 = Var(a + bX) = b^2 \sigma_X^2$$

$$\sigma_W = |b|\sigma_X$$

Practice

- Y=290-5T
- E(T)=24, stdev(T)=4

Q: Find E(Y) and stdev(Y)

E(Y)=290-5*24=290-120=170. stdev(Y)=5*4=20

$$PDF: f(x)$$

$$= \left\{ \frac{1}{b-a} \text{ for } a \le X \le b \right\}$$

$$CDF: F(x)$$

$$= \left\{ \begin{array}{c} 0 \text{ for } X < a \\ \frac{x-a}{b-a} \text{ for } a \le X \le b \\ 1 \text{ for } x > b \end{array} \right\}$$

e. Find the probability that any fracture is found between 0.5 and 1.5 km.

- b. Draw PDF.
- c. Find CDF for X. => F(x)=x/2 for [0 2]
- d. Draw CDF.

e. Find the probability that any fracture is found between 0.5 and 1.5 km.

=> F(1.5)-F(0.5)=1.5/2 - 0.5/2 = 0.5

