

# Measures of Relationship between Variables

- Covariance
- Correlation Coefficient

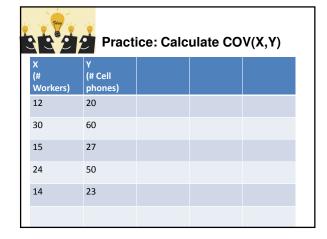
#### [start here]Covariance

- A measure of the linear relationship between two variables
- Only concerned with the direction of the relationship.

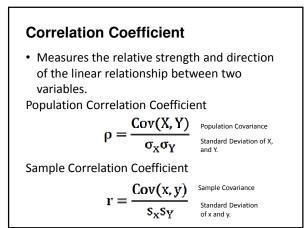
Population Covariance

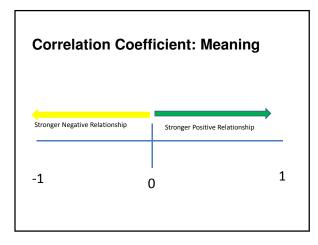
$$Cov(X, Y) = \sigma_{xy}$$
$$= \frac{\sum_{i=1}^{N} (X_i - \mu_x)(Y_i - \mu_Y)}{N}$$

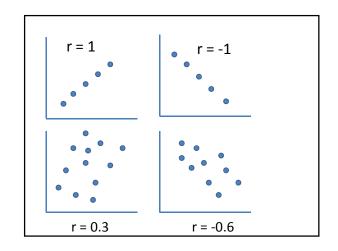
Sample Covariance

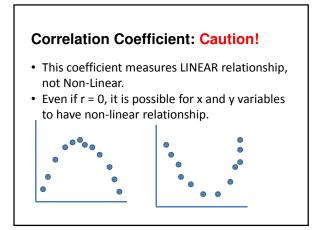

$$COV(x, y) = S_{xy}$$
$$= \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{n - 1}$$

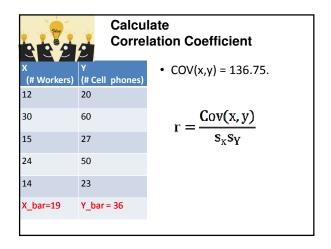
#### **Covariance: Meaning**


Cov(x,y) > 0 => X and Y tend to move in the same direction.


Cov(x,y) < 0 => X and Y tend to move in the
opposite direction.


**Cov(x,y)= 0** => X and Y are independent





| X<br>(# Workers) | Y<br>(# Cell<br>phones) | X-X_bar      | Y-Y_bar     | (X-X_bar)*<br>(Y-Y_bar) |
|------------------|-------------------------|--------------|-------------|-------------------------|
| 12               | 20                      | (12-19)=-7   | (20-36)=-16 | (-7)*(-16)=112          |
| 30               | 60                      | (30-19)=11   | (60-36)=24  | (11)*(24)=264           |
| 15               | 27                      | (15-19) = -4 | (27-36)=-9  | (-4)*(-9)=36            |
| 24               | 50                      | (24-19)=5    | (50-36)=14  | (5)*(14)=70             |
| 14               | 23                      | (14-19)=-5   | (23-36)=-13 | (-5)*(-13)=65           |
| X_bar=19         | Y_bar =<br>36           |              |             | SUM = 547               |
| COV(x,y)=        | 547/(5-:                | 1)=136,75 (  | (Positive R | elationship)            |











| x            | Y             | X-X_bar                    | Y-Y_bar      | (X-X_bar)^2  | (Y-Y_bar)^2 |
|--------------|---------------|----------------------------|--------------|--------------|-------------|
| 12           | 20            | (12-19)=-7                 | (20-36)=-16  | (-7)^2 = 49  | (-16)^2=256 |
| 30           | 60            | (30-19)=11                 | (60-36)=24   | (11)^2 = 121 | (24)^2=576  |
| 15           | 27            | (15-19) = -4               | (27-36)=-9   | (-4)^2=16    | (-9)^2=81   |
| 24           | 50            | (24-19)=5                  | (50-36)=14   | (5)^2 =25    | (14)^2=196  |
| 14           | 23            | (14-19)=-5                 | (23-36)=-13  | (-5)^2=25    | (-13)^2=169 |
| X_bar<br>=19 | Y_bar<br>= 36 |                            |              | SUM=236      | SUM=1278    |
|              | .75/(7        | sqrt(236/4)<br>'.68*17.87) | *sqrt(1278/4 | 1))          |             |

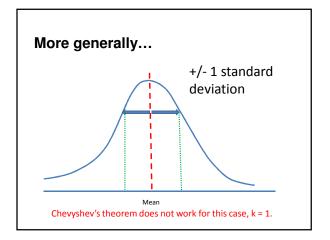


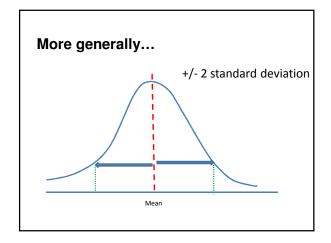
#### **Coefficient of Variation**

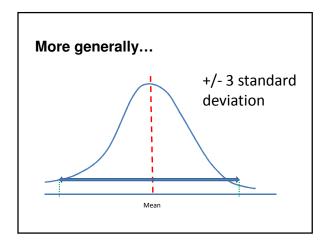
- A measure of relative variation
- Standard deviation as a percentage of the mean
- In %. => can compare multiple data measured in different units.

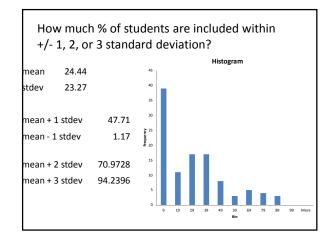
$$CV = {S \choose \overline{\overline{X}}} * 100\%$$
 if  $\overline{X} > 0$ 

where s: standard deviation,  $\overline{x}$  : mean.


| Which stock is the most risky one? |         |         |          |
|------------------------------------|---------|---------|----------|
|                                    | Stock A | Stock B | Stock C  |
| Average<br>price last<br>year      | 50 TL   | 100 USD | 100 Euro |
| St.dev.                            | 5 TL    | 20 USD  | 5 Euro   |
| CV                                 |         |         |          |
|                                    |         |         |          |


|                  | Which stock is the most risky? |                           |                         |
|------------------|--------------------------------|---------------------------|-------------------------|
|                  | Stock A                        | Stock B                   | Stock C                 |
| Average<br>price | 50 TL                          | 100 USD                   | 100 Euro                |
| St.dev.          | 5 TL                           | 20 USD                    | 5 Euro                  |
| CV               | (5/50)<br>*100%<br>=10%        | (20/100)<br>*100%<br>=20% | (5/100)*<br>100%<br>=5% |
|                  |                                |                           |                         |


## Chebyshev's Theorem


- Answers the question "How much percentage of observations can be found in the interval  $\mu\pm k\sigma$  ?"

Example <u>examscore</u>









### **Chebyshev's Theorem**

• For any mean and standard deviation, and **k** >1, the % of observation that fall within the interval  $\mu \pm k\sigma$  is at least

$$100\left[1-\left(\frac{1}{k^2}\right)\right]\%$$

• Regardless of how the data are distributed.

• Does not work for k = 1.

| Within             | At least          |
|--------------------|-------------------|
| K=2                | (1-(1/(2^2))*100% |
| (mean +/- 2 stdev) | = 75%             |
| K=3                | (1-(1/(3^2))*100% |
| (mean +/- 3 stdev) | = 89%             |

- Does not work for k = 1.
- K does not have to be integers.

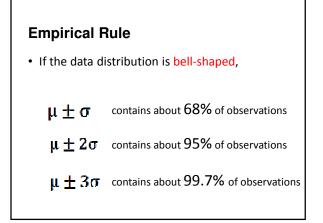
#### **Chebyshev's Theorem**

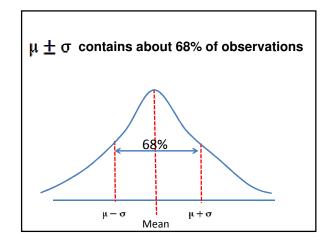
- Advantage: Applicable to any population & distributional shapes.
- **Disadvantage**: In reality, distributions are relatively close to symmetric, and % of observations in a specific range is much higher.

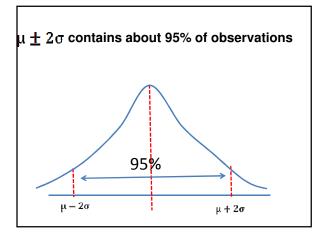


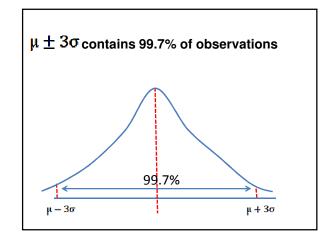
#### Practice

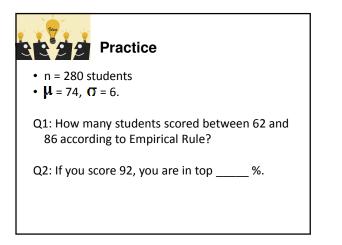
- A large class with 280 students.
- Midterm exam result: mean = 74, stdev=6.
- At least how many students scored between 50 and 98 according to Chevyshev's Theorem?
- (74+k\*6)=98
- K=(98-74)/6 = 4
- (1-(1/4<sup>2</sup>))\*100% = 0.9375\*100% = 93.75%
- 280\*0.9375=262.5 or at least 263 students.

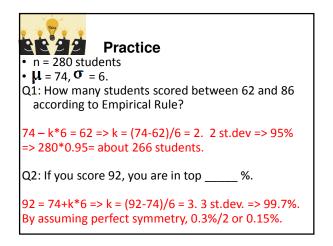

#### If stdev = 8, instead of 6,

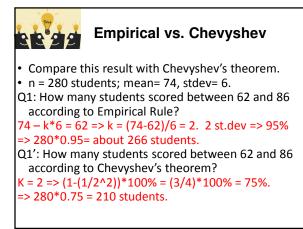

- At least how much % of students are included in the same range (50 & 98) ?
- Do you think it's more /less than the previous question? And WHY?
- (74+k\*8)=98
- K=(98-74)/8 = 3
- (1-(1/3<sup>2</sup>))\*100% = 88.9%
- Less # of students are included in the same range.

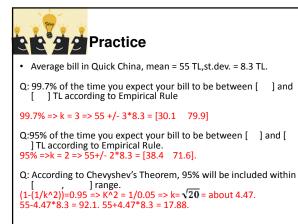


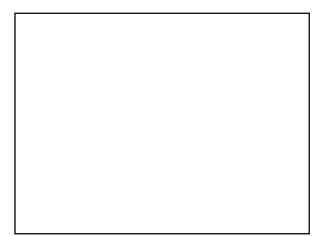


# Practice


- In company A, the average salary is 6000 TL with standard deviation of 1200 TL.
- According to Chevyshev's theorem, what is the interval in which at least 80% of the salaries lie?
- (1-(1/k<sup>2</sup>))=0.8 => (1/k<sup>2</sup>)=0.2 => k<sup>2</sup>=5, k=sqrt(5).
- 6000+sqrt(5)\*1200 = 8683.
- 6000-sqrt(5)\*1200 = 3317.
- 80% receives between 3317 and 8683 TL.














# Quiz 3 (Nov.1.2016)

Sample Data: {0, 4, 14, 25, 32}

- Q1. Calculate sample mean. = 15 (0.25 point)
- Q2. Calculate sample variance. = 184 (0.5 point)
- Q3. Calculate sample standard deviation. = 13.56 (0.25 point)

Sqrt not calculated = -0.05.