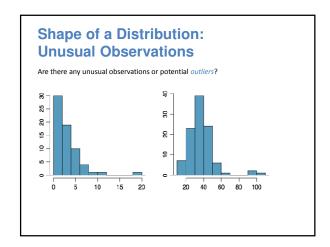
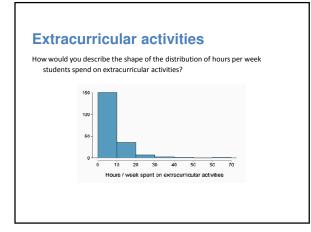
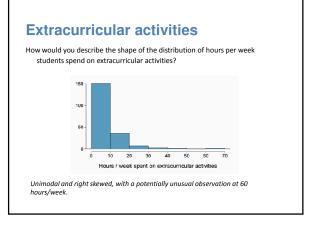
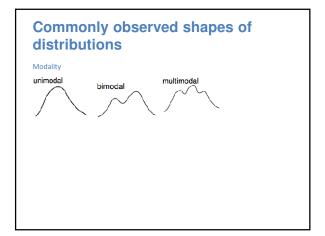

- Yield a blocky distribution
- May observe important patterns of variation
- Too Many Intervals (Narrow Class Intervals)
 May have many empty classes
 - Could give a poor indication of how frequency varies across classes.

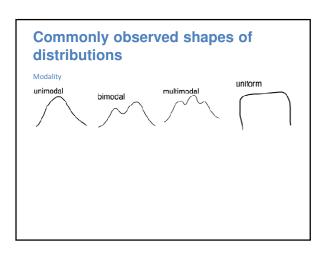


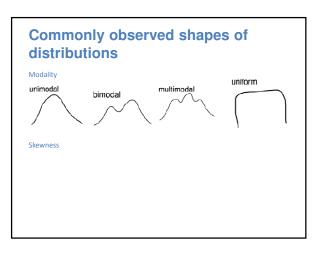


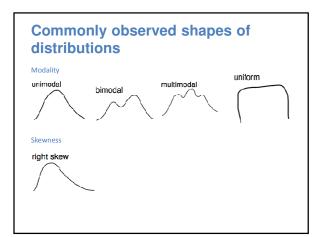


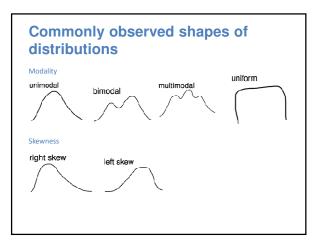
Modality

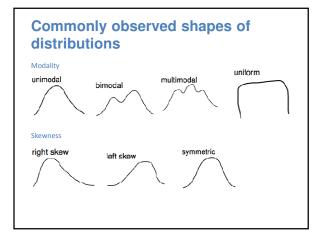


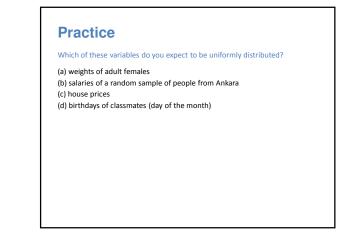



Commonly observed shapes of distributions


bimodal

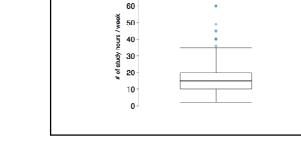

Modality unimodal



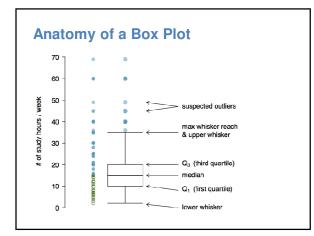


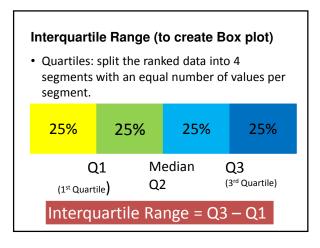
Practice

Which of these variables do you expect to be uniformly distributed?


(a) weights of adult females(b) salaries of a random sample of people from Ankara

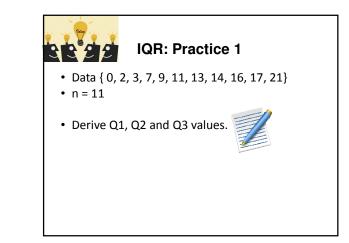
(c) house prices


(d) birthdays of classmates (day of the month)

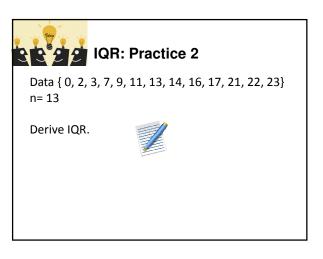

Box Plot

The box in a *box plot* represents the middle 50% of the data, and the thick line in the box is the median.

70



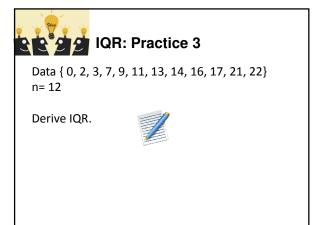
Q1 locates in ¼ (n+1) position (25% below, 75% above)

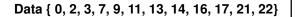

Q2 locates in ½(n+1) position (50% below, 50% above)

Q3 locates in ¾(n+1) position (75% below, 25%above)

Data { 0, 2, 3, 7, 9, 11, 13, 14, 16, 17, 21}

- Q1 location = ¼(11+1) = 3 (=> 3rd value = 3)
- Q2 location = ½(11+1) = 6 (=> 6th value = 11)
 Q3 location = ¾(11+1) = 9 (=> 9th value = 16)
- Q1= 3
- Q2=11
- Q3=16
- IQR = 16-3 = 13

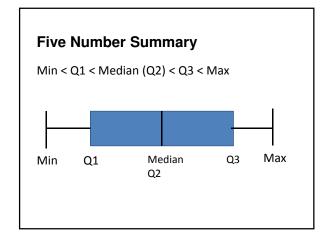

Data { 0, 2, 3, 7, 9, 11, 13, 14, 16, 17, 21, 22, 23}

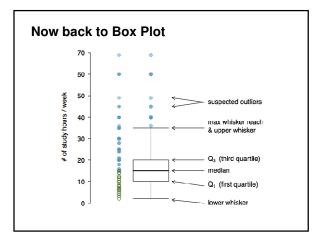

```
• Q1 location = ¼ (13+1) = 14/4=7/2=3.5
```

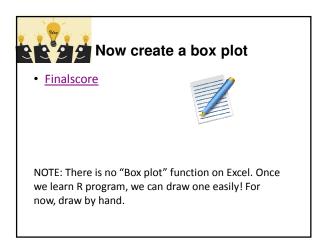
- Q2 location = ½(13+1)=7
- Q3 location = ³/₄(13+1)= 3*14/4 = 21/2=10.5

 $\Rightarrow Q1 = 3 + (7-3)*0.5 = 5$ $\Rightarrow Q2 = 11$ $\Rightarrow Q3 = 17 + (21-17)*0.5 = 19$

⇒IQR = 19-5 = 14

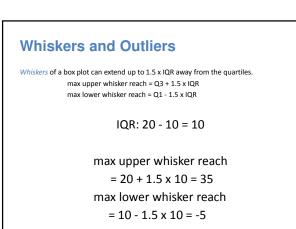





- Q1 location = ¼ (12+1) = 13/4=3.25
- Q2 location = ½(12+1)=13/2=6.5
- Q3 location = ³/₄(12+1)= (3*13)/4 = 39/4=9.75

```
 \Rightarrow Q1 = 3 + (7-3)*0.25 = 4 
 \Rightarrow Q2 = 11+(13-11)*0.5=12 
 \Rightarrow Q3 = 16+(17-16)*0.75 = 16.75
```

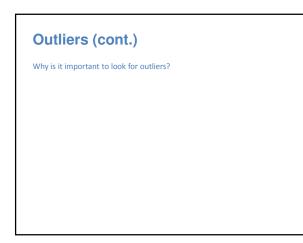
⇒IQR = 16.75-4 = 12.75



Whiskers and Outliers

Whiskers of a box plot can extend up to

- 1.5 x IQR away from the quartiles.
- max upper whisker reach = Q3 + 1.5 x IQR
- max lower whisker reach = Q1 1.5 x IQR



Whiskers and Outliers

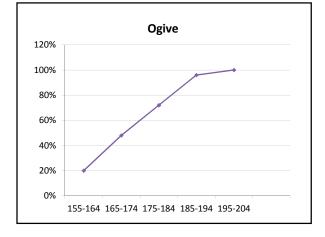
Whiskers of a box plot can extend up to 1.5 x IQR away from the quartiles. max upper whisker reach = Q3 + 1.5 x IQR max lower whisker reach = Q1 - 1.5 x IQR

IQR: 20 - 10 = 10 max upper whisker reach = 20 + 1.5 x 10 = 35 max lower whisker reach = 10 - 1.5 x 10 = -5

A potential *outlier* is defined as an observation beyond the maximum reach of the whiskers. It is an observation that appears extreme relative to the rest of the data.

Outliers (cont.)

Why is it important to look for outliers?

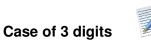

- Identify extreme skew in the distribution.
- Identify data collection and entry errors.
- Provide insight into interesting features of the data.

Ogive: Cumulative Line Graph

- X-axis: interval
- Y-axis: relative cumulative frequency

<u>height</u>

Stem-and-Leaf Display


- A simple way to see the distribution details in a data set.
- Step1: sort data in ascending order
- Step2: observe the digits of the data
- Step3: separate the sorted data into
 - Leading digits (stem)
 - Trailing digits (leaves)

Practice

Data{ 31, 45, 48, 55, 57, 58, 67, 68, 73, 75, 78, 80, 82, 85, 88, 89, 91, 92, 95, 99}

Sorted data 2 digits Leading digits = 10's digits Trailing digits = 1's digits

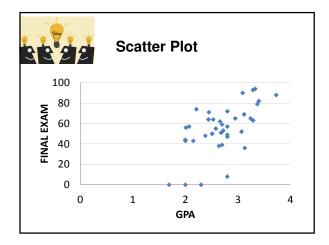
Stem	Leaves (Lea	af ur	nit = 1)
3	1		_
4	5	8	
5	5	7	8
6	7	8	
7	3	5	8
8	0	2	5 8 9
9	1	2	5 9
	_		

Data { 223, 368, 378, 421, 468, 490, 526, 574, 647 }

Sorted 3 digits Round off the 2nd digits 223 => 220 368=> 370 Stem = 100's digit Leave = 10's digit

Stem	Leave (Leaf unit = 10)
2	2
3	7 8
4	2 7 9
5	3 7
6	5

Describing Relationship between Variables


- 1. Cross Table for Categorical Variables
- 2. Scatter Plot for Numerical Variables

Cross Table

- List number of observations for every combination of values for two categorical variables.
- R categories for 1st variables (rows)
- C categories for 2nd variables (columns)

Cross Table						
	Investor A	Investor B	Investor C	Total		
Stocks	46	55	27	128		
Bonds	32	44	19	95		
CD (certificate of deposit)	15	20	13	48		
Savings	16	28	7	51		
Total	109	147	66	322		

Scatterplot Scatterplots are useful for visualizing the relationship between two numerical variables. Example: Relationship between GPA and Final Exam Score Data: <u>GPA</u> Q.What kind of relationship do you expect? Q.How it can be plotted? Q. How will it look like?

Quiz 1 (Oct.18)				
Category	Frequency (sales last week)			
iPhone	100			
SONY	45			
Samsong	75			
HTC	20			
TOTAL	240			
Q:Generate a Parato Diagram				