Discrete Probability Distribution

Week 11

Shapes of binomial distributions

- For this activity you will use a web applet. Go to http://socr.stat.ucla.edu/htmls/SOCR_Experiments.html and choose Binomial coin experiment in the drop down menu on the left.
- Set the number of trials to 20 and the probability of success to 0.15. Describe the shape of the distribution of number of successes.
- What happens to the shape of the distribution as *n* stays constant and *p* changes?
- What happens to the shape of the distribution as *p* stays constant and *n* changes?

How large is large enough?

The sample size is considered large enough if the expected number of successes and failures are both at least 10.

<i>np</i> ≥ 10	and	$n(1 - p) \ge 10$

How large is large enough? The sample size is considered large enough if the expected number of successes and failures are both at least 10. $np \ge 10$ and $n(1-p) \ge 10$

10 x 0.13 ≈ 1.3 10 x (1 - 0.13) = 8.7

Practice

Below are four pairs of Binomial distribution parameters. Which distribution can be approximated by the normal distribution?

A. n = 100, p = 0.95B. n = 25, p = 0.45C. n = 150, p = 0.05D. n = 500, p = 0.015

Practice

Below are four pairs of Binomial distribution parameters. Which distribution can be approximated by the normal distribution?

A. n = 100, p = 0.95B. $n = 25, p = 0.45 \rightarrow 25 \times 0.45 = 11.25, 25 \times 0.55 = 13.75$ C. n = 150, p = 0.05D. n = 500, p = 0.015

Hypergeometric Distribution

- "n" trials in a sample taken from a finite population of size N.
- Samples taken without replacement
- Outcome & trials are dependent
- Concerned with finding the probability of "X" success in the sample where there are "S" successes in the population

- C_X^S : # of possible ways that X success can be selected for the sample out of S successes contained in the population.
- C_{n-X}^{N-S} : (N-S) failures can be selected for the sample out of (N-S) failures in the population.
- C_n^N : total number of different sample size n that can be obtained from the population size N.

 $P(X) = \frac{C_X^S C_{n-X}^{N-S}}{C_n^N}$ **Practice** 3 different computers are checked from 10 in the department. 4 of the 10 computers have illegal software loaded. What is the probability that 2 of the 3 selected computers have illegal software loaded? $P(X) = \frac{C_2^4 C_{3-2}^{10-4}}{c^{10}}$ C_{3}^{10} N=10 41 (10 - 4) $\overline{2!(4-2)!(3-2)!(10-4-3+2)!}$ S=4 101 n=3 3!(10-3)!Probability of selecting 2 of the 3 selected computers X=2 6*6 have illegal software loaded = 0.3 120 is 30%.

Practice

A company receives a shipment of 16 items. A random sample of 4 items is selected and the shipment is rejected if any of these items proves to be defective.

Q1. What is the probability of accepting a shipment containing 4 defective items?

N=16, S=4, n=4, X=0 P(X=0)= 0.2720 Q2. What is the probability of accepting a shipment containing 1 defective item?

N=16, S=1, n=4, x=0 P(X=0)=0.75

Q3. What is the probability of rejecting a shipment containing 1 defective item?

N=16, S=1, n=4, X= ?

1-P(X=0) =1-0.75 =0.25

Poisson Distribution

Apply the Poisson Distribution when

- You wish to count the number of times an event occurs in a given continuous interval.
- The probability that an event occurs in one subinterval is very small and is the same for all subintervals.
- The number of events that occur in one subinterval is independent of the number of events that occur in the other subintervals.

Practice
$$P(X) = \frac{e^{-\lambda}\lambda^{x}}{x!}$$
3 component failures occurred during last 100 days in his computer system.
a. What is the probability of no failure in a given day?
What is λ ? $\lambda = 3/100 = 0.03$ per day.
$$P(X = 0|\lambda = 0.03)$$

$$= \frac{e^{-0.03}0.03^{0}}{0!} = e^{-0.03}$$

$$= 0.9704$$

b. What is the probability of one or more components failures in a given day?

 $1-P(X=0|\lambda=0.03) = 0.029554$

 $P(X > 2|\lambda = 2)$ = 1 - P(X \le 2|\lambda = 2) = 1 - [P(X = 0) + P(X = 1) + P(X = 2)] = 1 - [\frac{e^{-2}2^0}{0!} + \frac{e^{-2}2^1}{1!} + \frac{e^{-2}2^2}{2!}] = 1 - (e^{-2}(1 + 2 + 2)) = 0.3233

Practice'

- Customers arrive at a photocopy center at an average rate of two every 5 minutes.
- Find a probability that more than two customers arrive in a 1-minute period.
- X: # of arriving customers in a 1 minutes period.

What is λ ? $\lambda = 2/5$. What kind of probability are we looking for? $P(X > 2l\lambda = 2/5)$.

Practice

 A professor receives on average 4.2 e-mails from students the day before a final exam. If the distribution of calls is Poisson, what is the probability of receiving at least 3 of these emails on such a day?

What is λ ? = 4.2

 $\begin{array}{l} P(X \geq 3 | \lambda = 4.2) = 1 - [P(X = 2) + P(X = 1) + P(X = 0)] \\ = 1 - e^{-4} \cdot 2[1 + 4.2 + (4.2^{2})/2] = 0.78976 \end{array}$

Poisson Approximation to the Binomial Distribution

- When n is very large and p is small (np≤7), then we can use Poisson distribution to approximate binomial distribution.
- X: number of successes from n independent trials
- P: probability of success
- Distribution of X: binomial with mean np.
- n: large, $np \le 7$.
- This binomial distribution can be approximated by the Poisson distribution with $\lambda = np$.

Poisson Approximation to Binomial Distribution ($np \le 7$)

$$P(X) = \frac{e^{-np}(np)^{x}}{x!}$$

Practice

- 3.5% of small corporate would file for bankruptcy in the coming year. For a random sample of 100 small corporations, what is the probability that at least 3 will file for bankruptcy in the next year?
- n= 100, p = 0.035, np = 3.5
- $P(X \ge 3| np=3.5)=1-P(X \le 2|np=3.5)$
- =1-[P(X=0)+P(X=1)+P(X=2)]
- =1- e^(-3.5)*[1+3.5+(3.5^2)/2]=0.684093

Joint Probability Function

- A joint probability function is used to express the probability that X takes the specific value x and simultaneously Y takes the value y, as a function of x and y.
- $P(x,y)=P(X=x \cap Y=y)$

Practice

- Coin toss 3 times
- X: # of heads on the 1st toss
- Y: total number of heads
- S={hhh, hht, hth, htt, thh, tht, tth, ttt}
- Complete the table below, joint probabilities
 and marginal probabilities

		T (LOLAI HUIH	r (total number of neads in 5 tosses)					
		0	1	2	3			
X (# of	0							
heads on 1 st toss)	1							
P(Y)								

		Y (total num	ber of heads	in 3 tosses)		P(X)
		0	1	2	3	
X (# of heads	0	{ttt} =1/8	{tht, tth} =2/8	{thh} =1/8	0	=4/8
on 1 st toss)	1	0	{htt} =1/8	{hht, hth} =2/8	{hhh} =1/8	=4/8
P(Y)		=1/8	=3/8	=3/8	=1/8	

Conditional Probability Function

• The conditional probability function of the random variable Y expresses the probability that Y takes the value y when the value x is specified for X.

$$P(y|x) = \frac{P(x,y)}{P(x)} \qquad P(x|y) = \frac{P(x,y)}{P(y)}$$

		Y (total num	ber of heads	in 3 tosses)		P(X)
		0	1	2	3	
X (# of	0	{ttt} =1/8	{tht, tth} =2/8	{thh} =1/8	0	P(X=0)= 4/8
heads on 1 st toss)	1	0	{htt} =1/8	{hht, hth} =2/8	{hhh} =1/8	P(X=1)= 4/8
P(Y)		P(Y=0) =1/8	P(Y=1) =3/8	P(Y=2) =3/8	P(Y=3)= 1/8	
• Fi P(x	ind Pi	$(X=1 Y=2) = \frac{P(x, y)}{P(y)}$	and P(Y=)	$2 X=1)$ $x) = \frac{P(x, x)}{P(x)}$	<u>.y)</u> x)	

Quiz 8

- a. 30% of cars on Eskisehir yolu are driving over the speed limit (82km/hr). What is the probability that at least 2 cars are going over the speed limit if there are 10 cars on the road? Calculate by hand (without table).
- b. If 75% of cars on Eskisehir yolu are driving over the speed limit, what is the probability that more than 5 cars are going over the speed limit if there are 15 cars on the road? (Use table)

					TABLE I	I: contin	nued
						p	
n	x	0.05	0.10	0.15	0.20	0.25	0.30
_	11	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	12	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	13	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	14	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
15	0	0.4633	0.2059	0.0874	0.0352	0.0134	0.0047
	1	0.8290	0.5490	0.3186	0.1671	0.0802	0.0353
	2	0.9638	0.8159	0.6042	0.3980	0.2361	0.1268
	3	0.9945	0.9444	0.8227	0.6482	0.4613	0.2969
	4	0.9994	0.9873	0.9383	0.8358	0.6865	0.5155
	5	0.9999	0.9978	0.9832	0.9389	0.8516	0.7216
	6	1.0000	0.9997	0.9964	0.9819	0.9434	0.8689
	7	1.0000	1.0000	0.9994	0.9958	0.9827	0.9500
	8	1.0000	1.0000	0.9999	0.9992	0.9958	0.9848
	9	1.0000	1.0000	1.0000	0.9999	0.9992	0.9963
	10	1.0000	1.0000	1.0000	1.0000	0.9999	0.9993
	11	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999
	12	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	13	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	14	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	15	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

Quiz 8_2

- a. 40% of student taking ECO239 pass the course. What is the probability that at least 9 students will pass the course if there are 10 students in the class. Calculate by hand (without table).
- b. If 70% of students taking ECO239 pass the course, what is the probability that more than 10 students will pass the course if there are 15 students in the class? Use table.