1. For a binomial probability function with $\mathrm{p}=0.3$ and $\mathrm{n}=10$, find the probability that the number of successes is less than 2.

$$
\begin{aligned}
\mathrm{P}(\mathrm{x}<2) & =\mathrm{P}(\mathrm{x}=0)+\mathrm{P}(\mathrm{x}=1) \\
& =\frac{10!}{0!10!}(0.3)^{0}(0.7)^{10}+\frac{10!}{1!9!}(0.3)^{1}(0.7)^{9} \\
& =(0.7)^{10}+10^{*}(0.3)^{*}(0.7)^{9}=0.1493
\end{aligned}
$$

2. Compute the probability of successes that the number of successes are greater than 1 in a random sample of size $n=5$ obtained from a population of size $N=10$ that contains 5 successes.
$\mathrm{P}(\mathrm{x}>1)=1-[\mathrm{P}(\mathrm{x}=0)+\mathrm{P}(\mathrm{x}=1)]=1-\left[\frac{C_{0}^{5} C_{5}^{5}}{C_{5}^{10}}+\frac{C_{1}^{5} C_{4}^{5}}{C_{5}^{10}}\right]=1-26 / 252=0.8968$.
3. Determine the probability that the number of successes are exactly 2 successes for a random variable with a Poisson distribution with parameter lambda $=2.5$.
$\mathrm{P}(\mathrm{x}=2)=\frac{e^{-2.5} 2.5^{2}}{2!}=0.2526$
4. Determine the probability that the number of successes are between 1 and 2 (including 1 and 2) with parameter lambda $=2.5$.
$\mathrm{P}(1 \leq \mathrm{x} \leq 2)=\frac{e^{-2.5} 2.5^{1}}{1!}+\frac{e^{-2.5} 2.5^{2}}{2!}=0.4617$.

Notes upon grading;

1. Total point is 10 points.
2. Correct formula $=0.5$ point each
3. Correct set-up of probability $=1$ point each
4. Correct insertion of numbers $=0.8$
5. Exact calculation of answers $=0.2$

Your quiz paper can be checked in my office.

