ECO137 Homework Questions for Chapter 8 ' Single-Variable Optimization'

1. Let y denote the weekly average quantity of meat produced in Chicago during 1948 (in millions of pounds) and let x be the total weekly work effort (in thousands of house). Nichols estimated the relation as $y=-2.05+1.06 x-0.04 x^{2}$. Determine the value of x that maximizes y by studying the sign variation of y^{\prime}.
2. Find possible extreme points for $g(x)=x^{3} \ln x, x$ in $(0, \infty)$.
3. Find possible extreme points for $\mathrm{f}(\mathrm{x})=e^{3 x}-6 e^{x}, x \in(-\infty, \infty)$.
4. Find the maximum of $y=x^{2} e^{-x}$ on $[0,4]$.
5. Find the values of x that maximize/minimize the following functions.
(a) $y=\ln x-5 x, x>0$. (b) $y=e^{x}+e^{-2 x}$
6. A firm produces $\mathrm{Q}=2 \sqrt{L}$ units of a commodity when L units of labor are employed. If the price obtained per unit is 160 Euros, and the price per unit of labor is 40 Euros, what value of L maximizes profits?
7. Find the maximum and minimum of each function over the indicated interval:
(a) $f(x)=-2 x-1[0,3]$,
(b) $f(x)=x^{3}-3 x+8[-1,2]$,
(c) $f(x)=x^{5}-5 x^{3},[-1, \sqrt{5}]$
8. For the following functions determine all numbers x^{*} in the specified intervals such that $\mathrm{f}^{\prime}\left(\mathrm{x}^{*}\right)$ $=[f(b)-f(a)] /(b-a)$:
(a) $f(x)=x^{2}$ in $[1,2]$
(b) $\mathrm{f}(\mathrm{x})=\sqrt{9+x^{2}}$ in $[0,4]$
9. Given Total Revenue $R(Q)=10 \mathrm{Q}-\left(\mathrm{Q}^{2} / 1000\right)$, Total $\operatorname{Cost} \mathrm{C}(\mathrm{Q})=5000+2 \mathrm{Q}$, and Q in $[0$, 10000], find the value of Q that maximizes profits.
10. The price of a firm obtains for a commodity varies with demand Q according to the formula $\mathrm{P}(\mathrm{Q})=18-0.006 \mathrm{Q}$. Total cost is $\mathrm{C}(\mathrm{Q})=0.004 \mathrm{Q}^{2}+4 \mathrm{Q}+4500$.
(a) find the firm's profit and the value of Q which maximizes profit.
(b) find a formula for the elasticity of $\mathrm{P}(\mathrm{Q})$ w.r.t. Q , and find the particular value Q^{*} of Q at which the elasticity is equal to -1 .
11. Consider the function f defined for all x by $f(x)=x^{3}-12 x$. Find the stationary points of f and classify them by using both the first- and second-derivative tests.
12. Determine the possible local extreme points and values for the following functions:
(a) $f(x)=x^{3}-3 x+8,(b) f(x)=x^{3}+3 x^{2}-2$.
13. Let f be defined for all x by $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}+(3 / 2) \mathrm{x}^{2}-6 \mathrm{x}+10$.
(a) Find the stationary points of f and determine the intervals where f increase.
(b) Find the inflection point for f .
14. Decide where the following functions are convex and determine possible inflection points:
(a) $f(x)=x /\left(1+x^{2}\right), \quad$ (b) $h(x)=x e^{x}$, (c) $y=\ln x+1 / x \quad$ (d) $y=\left(x^{2}+2 x\right) e^{-x}$.
