ECO137 HW Questions for Chapter 7 'Derivative in Use" Part 1.

1. Find the first and the second derivative with respect to x by implicit differentiation when (a) $x-y+3 x y=2$ (b) $y^{5}=x^{6}$
2. Suppose that y is a differentiable function of x that satisfies the equation $2 x^{2}+6 x y+y^{2}=18$. Find y^{\prime} and $y ;$, at the point $(x, y)=(1,2)$.
3. Suppose y is defined implicitly as a function of x by the following equations, where g is a given differentiable function of one variable. Find an expression for y '.
(a) $x y=g(x)+y^{3}$
(b) $g(x+y)=x^{2}+y^{2}$
(c) $(x y+1)^{2}=f\left(x^{2} y\right)$
4. Consider the equation $A P^{-\alpha} r^{-\beta}=S$, where $\mathrm{A}, \alpha, \beta, \mathrm{S}$ are positive constants. Take natural logarithms of both sides and find $\mathrm{dP} / \mathrm{dr}$ by implicit differentiation. Determine its sign.
5. Let f be defined by $f(x)=\ln \left(2+e^{x-3}\right)$ for all x.
(a) Show that f is strictly increasing and find the range of f .
(b) Find an expression for the inverse function g of f. Where is g defined?
(c) Verify that $f^{\prime}(3)=1 / g^{\prime}(f(3))$.
6. Find the linear approximations to the following functions about $x=0$.
(a) $f(x)=(1+x)^{-1}$
(b) $f(x)=(1+x)^{5}$
(c) $f(x)=(1-x)^{1 / 4}$
7. Find the linear approximation to $\mathrm{F}(\mathrm{K})=\mathrm{AK}^{\alpha}$ about $\mathrm{K}=1$.
8. The equation $3 x e^{x y^{2}}-2 y=3 x^{2}+y^{2}$ defines y as a differentiable function of x about the point $(\mathrm{x}, \mathrm{y})=(1,0)$.
(a) Find the slope of the graph at this point by implicit differentiation.
(b) What is the linear approximation to y about $\mathrm{x}=1$?
9. Find the Taylor polynomial of degree 2 about $\mathrm{x}=0$ for $\mathrm{f}(\mathrm{x})=5(\ln (1+\mathrm{x})-\sqrt{1+x})$.
10. Find the quadratic approximation for y about $(x, y)=(0,1)$ when y is defined implicitly as a function of x by the equation $1+x^{3} y+x=y^{1 / 2}$.
11. Let $\mathrm{g}(\mathrm{x})=\sqrt[3]{1+x}$.
(a) Find the Taylor polynomial of $g(x)$ fo order 2 about the origin.
(b) For $x \geq 0$ show that $\left|R_{3}(x)\right| \leq 5 x^{3} / 81$.
12. A study of transport economics uses the relation $T=0.4 \mathrm{~K}^{1.06}$, where K is expenditure on building roads, and T is a measure of traffic volume. Find the elasticity of T w.r.t. K . In this model, if expenditure increases by 1%, by what percentage (approximately) does traffic volume increase?
13. The demand D for apples in the U.S. as a function of income r for the period 1927 to 1941 was estimated as $\mathrm{D}=\mathrm{Ar}^{1.23}$, where A is constant. Find and interpret the elasticity of D w.r.t. r.
