ECO137 HW Questions for Chapter 6 "Differentiation"

1.(a) Let $f(x)=3 x 2+2 x-1$. Show that for $\mathrm{h} \neq 0$,

$$
\frac{f(x+h)-f(x)}{h}=6 x+2+3 h
$$

Use this result to find $\mathrm{f}^{\prime}(\mathrm{x})$.
(b) Find in particular $f^{\prime}(0), f^{\prime}(-2)$, and $f^{\prime}(3)$. Find also the equation of the tangent to the graph at the point $(0,-1)$.
2. Examine where $f(x)=-x^{3}+4 x^{2}-x-6$ is increasing/decreasing.
3. The profit function is $\pi(\mathrm{Q})=24 \mathrm{Q}-\mathrm{Q}^{2}-5$. Find the marginal profit, and find the value Q^{*} of Q which maximizes profits.
4. For $f(x)=\left(x^{4}-6 x^{2}\right)$, determine the intervals where f is increasing.
5. For $f(x)=3 x /\left(-x^{2}+4 x-1\right)$, compute $f^{\prime}(x)$ and determine where the function increase by using a sign diagram. (The function is not defined for $x=2 \pm \sqrt{3}$).
6. If f is differentiable at x , find the expressions for the derivatives for the following functions.
(a) $x^{2} f(x)+[f(x)]^{3}$
(b) $[\mathrm{f}(\mathrm{x})]^{2} / \mathrm{x}^{3}$.
7. Find the intervals where the following functions are increasing:
(a) $y=x^{3}+e^{2} x$
(b) $y=5 x^{2} e^{-4 x}$
8. Find the derivatives of
(a) $y=x^{3}(\ln x)^{2}$
(b) $y=(\ln x+3 x)^{2}$
9. Find the intervals where the following functions are increasing:
(a) $y=\ln \left(4-x^{2}\right)$
(b) $y=(1-\ln x)^{2} /(2 x)$

